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ABSTRACT
Near-duplicate video retrieval (NDVR) aims to find the copies or
transformations of the query video from a massive video data-
base. It plays an important role in many video related applications,
including copyright protection, tracing, filtering and etc. Video
representation and similarity search are crucial to any video re-
trieval system. To derive effective video representation, most video
retrieval systems require a large amount of manually annotated
data for training, making it costly inefficient. In addition, most re-
trieval systems are based on frame-level features for video similarity
searching, making it expensive both storage wise and search wise.
To address the above issues, we propose a video representation
learning (VRL) approach to effectively address the above shortcom-
ings. It first effectively learns video representation from unlabeled
videos via contrastive learning to avoid the expensive cost of man-
ual annotation. Then, it exploits transformer structure to aggregate
frame-level features into clip-level to reduce both storage space and
search complexity. It can learn the complementary and discrimina-
tive information from the interactions among clip frames, as well as
acquire the frame permutation and missing invariant ability to sup-
port more flexible retrieval manners. Comprehensive experiments
on two challenging near-duplicate video retrieval datasets, namely
FIVR-200K and SVD, verify the effectiveness of our proposed VRL
approach, which achieves the best performance of video retrieval
on accuracy and efficiency.

CCS CONCEPTS
• Information systems → Video search.
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Figure 1: The illustration of video representation learning.
Videos are split into shots via shot boundary detection, and
further divided into clips at a fixed time interval. Then our
VRL approach is applied to extract clip-level video represen-
tation. Finally, we binarize the clip-level features via hashing
method for efficient retrieval.
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1 INTRODUCTION
These days, we have witnessed dramatic increase in the volume
of videos generated over internet. At the same time, we have also
observed a large number of videos that essentially steal contents
from others, making video copyright protection and filtering an
important demand. Near-duplicate video retrieval (NDVR) aims to
address the problem by identifying the copies or transformations of
the query video from a large video database, which has drawnmuch
attention [1–3]. It is one of the tasks in video retrieval, which also
contain content-based video retrieval [4], video moment retrieval
[5], video-text retrieval [6] and so on.

To design an efficient and effective near-duplicate video retrieval
system, two components are important, i.e. video representation
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and similarity search. For video representation, most existing meth-
ods [7–9] apply supervised deep learning technologies to learn ap-
propriate feature representation for accurate video content match-
ing. It is costly and hard to learn the robust and powerful video
representation in this way, due to: (1) A large amount of labeled
videos are needed for the learning process. (2) The limited labeled
videos restrict the ability of learning. So this is the first issue we
should address in this paper.

For similarity search, most methods [8, 10–12] represent each
video by a set of frame-level features, and the similarity between two
videos are decided by the similarities between their frames followed
by temporal alignment analysis, such as dynamic programming[11,
13], temporal network[12, 14, 15], and Temporal Hough Voting[16,
17]. The main shortcoming of these methods are of two folders.
First, it needs to store all the frame-level features from all videos,
making it storage expensive. Second, since the similarity measure-
ment between two videos requires the similarity measurement
between frames, making it computationally expensive. One common
approach [7, 9] to address these limitations is to represent each
video by a single vector (i.e. video-level features). Although these
approaches help alleviate the problems of storage and computa-
tional cost, as pointed out in [18], they are insufficient to capture
crucial details of individual videos, particularly for long videos. So
this is the second issue we should address in this paper.

To address the above issues, we propose a video representation
learning (VRL) approach. It leverages contrastive learning to learn
video representation from large amounts of unlabeled videos, and
exploits transformer structure to aggregate frame-level features
into clip-level, as shown in Figure 1. More specifically, the key
contributions of this work can be summarized as follow:

• Frame-level encoding is proposed to learn the frame-level
representation with the pairs of the video frames and their
transformations, which are automatically generated by tem-
poral and spatial transformations, thus avoiding the high
cost in manual annotation. It encodes the frame-level fea-
tures via exploring the discriminative spatial structure with
contrastive learning.Due to the self-generation of training
data, our VRL approach can learn better frame-level repre-
sentation from a large amount of unlabelled videos, leading
to better generalization.

• Clip-level encoding is proposed to aggregate frame-level
features into clip-level, leading to significant reduction in
both storage space and search complexity. It can learns the
complementary and variant information from the interac-
tions among clip frames via self-attention mechanism, as
well as acquires the frame permutation andmissing invariant
ability to handle the issue of missing frames, both of which
increase the discrimination and robustness of the clip-level
feature. Besides, it supports more flexible retrieval manners,
such as clip-to-clip retrieval and frame-to-clip retrieval.

Comprehensive experiments on two challenging video retrieval
datasets, namely FIVR-200K and SVD, verify the effectiveness of
our VRL approach, which achieves the best performance of video
retrieval on accuracy and efficiency. Compared with video-level
methods, our VRL achieves the improvements of 30.6%, 28.2%, 21.3%
mAPs on the DSVR, CSVR and ISVR tasks of FIVR-200K dataset, and

4.7% mAP on SVD dataset. Compared with frame-level methods,
our VRL approach achieves comparable performance, and reduces
about 78.7% of the feature storage cost and increases the retrieval
speed by ∼ 25 times.

2 RELATEDWORK
Existing video retrieval methods can be divided into two categories:
frame-level retrieval methods and video-level retrieval methods.

2.1 Frame-level Retrieval Methods
These methods generally extract frame-level features using CNN,
and retrieve related frames by approximate nearest neighbor search.
Various post-processing methods[12, 15, 16, 19–21] have been pro-
posed to aggregate the frame-to-frame similarity matrix to video
similarity score. Jiang et al. propose Temporal Hough Voting [16]
to find temporal alignments, which makes full use of the relative
timestamp betweenmatched frames. Tan et al. propose Graph-based
Temporal Network [12] to detect the longest shared path between
two compared videos. Hu and Lu [15] combine temporal network
with a CNN+RNN feature encoder, to address the problem of partial
copied detection. Another popular solution is based on Dynamic
Programming(DP), which is applied to extract the biggest matched
diagonal block from frame-to-frame similarity matrix, and tolerate
limited horizontal and vertical movements for flexibility. Chou et
al. [11] apply Bag-of-Words to represent frames, and propose m-
pattern-based dynamic programming (mPDP) algorithm to localize
near-duplicate segments and re-rank the retrieved videos. However,
the above methods ignore exploiting spatial feature invariance,
which is essential to video retrieval. Recently, Kordopatis-Zilos et
al. [8] employ a region-level similarity calculation and aggregate
region similarity matrix to frame similarities, which considers fine-
grained spatial alignments and achieves high retrieval performance.
These frame-level retrieval methods disregard the redundancy be-
tween successive frames, so that more computation cost will be
needed, resulting in a low retrieval efficiency.

2.2 Video-level Retrieval Methods
Video-level retrieval methods encode the videos in video-level, and
search for the 𝑘-nearest neighbors for the video-level feature of
the query video in the embedding space. Various frame feature
aggregation methods[7, 10, 22–25] have been used to obtain a sin-
gle video-level representation. Liong et al. [26] propose temporal
pooling layer to aggregate the successive frames by the means of av-
erage pooling. Kordopatis-Zilos et al. [10] extract individual frame
features from intermediate CNN layers, and adopt Bag-of-Words to
compress them into a video-level representation, so that video sim-
ilarity can be measured by calculating the cosine distance between
the two video-level representations. Furthermore, Kordopatis-Zilos
et al. [7] aggregate frame features by the means of average pooling,
and introduce Deep Metric Learning(DML) to learn an embedding
by minimizing the distance between related videos and maximizing
the distance between irrelevant ones. Hash codes based methods
[23, 27–29] are also widely used to encode unified spatial-temporal
representation from videos. Song et al. [29] capture the temporal
relationship between frames using an encoder-decoder architecture.
Li et al. [27] apply the binary codes to capture spatial-temporal
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Figure 2: Overview of our VRL approach.

structure in a video by integrating the neighborhood attention
mechanism into an RNN-based reconstruction scheme. However,
these video-level retrieval methods generally perform worse than
frame-level retrieval methods, which is mainly due to that single
vector is hard to capture the entire spatio-temporal structure in a
video sufficiently.

3 LEARN FROM UNLABELED VIDEOS
In this section, we present the proposed video representation learn-
ing (VRL) approach for efficient retrieval by reducing the expensive
cost of manual annotation, storage space and similarity search.
It mainly consists of two components: frame-level encoding and
clip-level encoding, as shown in Figure 2. First, we automatically
generate the frame or video clip pairs via temporal and spatial
transformations. Then, we utilize these pairs as supervision to learn
frame-level feature with contrastive learning. Finally, we aggregate
the frame-level features into clip-level feature via self-attention
mechanism, and increase the robustness via masked frame model-
ing.

3.1 Frame-level Encoding
Existing methods generally train their model with manual anno-
tated video pairs. The more data, the better performance will be
achieved [30]. However, the cost of annotation is too expensive to
generate a large amount of training data. So the video representa-
tion learning is restricted to the limited volume of training data.
Inspired by the advance of contrastive learning methods [31], we
propose to learn the frame-level representation from large amounts
of unlabeled videos with contrastive learning to break the restric-
tion, and exploit the spatial invariant of representation to defense
various video transformations.

3.1.1 Self-generation of Training Data. First, we automatically col-
lect a large amounts of videos from the videowebsite, and the details
will be introduced in Sec. 4.2. Then, temporal and spatial transfor-
mations are sequentially performed on these clips to construct the
training data.

(1) Temporal Transformation: As shown in the left part of
Figure 3, given a video, we first uniformly sample 𝑁 frames with
a fixed time interval 𝑟 to generate the anchor clip, denoted as 𝐶 =

{𝐼1, 𝐼2, · · · , 𝐼𝑁 }. Then a frame 𝐼𝑚 is randomly selected from the
anchor clip as the identical content shared by anchor clip 𝐶 and
positive clip 𝐶+. We regard the selected frame as the median frame
of 𝐶+, and uniformly sample 𝑁−1

2 frames forward and backward
respectively, with a different sample time interval 𝑟+. 𝑟 is set to 1,
and 𝑟+ is set to from 0.5 to 2 randomly.

(2) Spatial Transformation: For each frame, we further per-
form spatial transformation. As shown in the right part of Figure
3, three types of spatial transformations are considered: (a) Photo-
metric transformation. It includes the transformations of brightness,
contrast, hue, saturation and gamma adjustment. (b) Geometric
transformation. It includes the transformations of horizontal flip,
rotation, crop, resize and translation. (c) Editing transformation. It
includes the transformations of adding blurred background, adding
logo, picture in picture and etc.. In training stage, we randomly
select one transformation from each type of spatial transformation,
and then apply them with randomly gray transformation and color
constancy transformation on frames from positive clips in sequence
to generate the new positive clips.

3.1.2 Spatial Structure Encoding. Since the supervised pairs are
generated, we first utilize them to learn the video representation
with frame-level contrastive loss. As shown in Figure 4, we adopts
ResNet 50 [32] as the backbone, and then follow a convolutional
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Figure 3: Illustration of self-generation of training data.

layer to reduce the channel number of the feature map, finally
average pooling and 𝐿2 normalization are applied to obtain the
frame-level feature.

The goal of spatial structure encoding is to capture spatial dis-
crimination from individual frames and ignore the impacts of var-
ious transformations, through minimizing the distance between
features of the anchor clip frames and positive clip frames, as well
as maximizing the distance between features of the anchor/positive
clip frames and negative clip frames.

Specifically, given an anchor clip containing 𝑁 frames 𝐶 =

{𝐼1, 𝐼2, · · · , 𝐼𝑁 }, then a positive clip is generated via temporal and
spatial transformations, denoted as 𝐶+ = {𝐼1+, 𝐼2+, · · · , 𝐼𝑁+ }. We or-
ganize these frames in semantic-related pairs {(𝐼𝑡 , 𝐼𝑡+)}𝑁𝑡=1. Then
spatial structure encoding is employed to encode spatial discrimi-
nation from individual frames, which is formulated as

𝑣 = 𝑓𝑆 (𝐼 ) (1)

Since a set of frame-level features 𝑆𝐹 = {(𝑣𝑡 , 𝑣𝑡+)}𝑁𝑡=1 is obtained,
a contrastive learning is adopted to drive the features more discrim-
inative and robust. The loss function is an adapted noise contrastive
estimation loss [31], and its definition is as follow:

𝐿𝐹 =
1
𝑁

𝑁∑︁
𝑡=1

− E𝑃𝑑 log 𝑃 (𝐷 = 1|𝑣𝑡 , 𝑣𝑡+)

− (1 − E𝑃𝑑 ) log(1 − 𝑃 (𝐷 = 1|𝑣𝑡 , 𝑣𝑡+))
(2)

where 𝑃𝑑 denotes the actual data distribution and E𝑃𝑑 = 1 indicates
𝐼𝑡 and 𝐼𝑡+ share absolutely identical visual semantic. The probability
of the encoded vectors 𝑣𝑡 with 𝑣𝑡+ is from the data distribution
𝑃 (𝐷 = 1|𝑣𝑡 , 𝑣𝑡+) can be defined as :

𝑃 (𝐷 = 1|𝑣𝑡 , 𝑣𝑡+) =
exp(𝑣𝑡T𝑣𝑡+)

exp(𝑣𝑡T𝑣𝑡+) + max
𝑣−∉𝑆𝐹

exp(𝑣𝑡T𝑣−)
(3)

where 𝑣− indicates the feature of frame from the negative chip,
which is semantic-irrelevant with anchor clip. It is noted that only
the batch-hardest negative frame will contribute to the 𝑃 (𝐷 =
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Figure 4: Model architecture.

1|𝑣𝑡 , 𝑣𝑡+), because the simple negative frames will decrease the dis-
criminability of the learned feature.

3.2 Clip-level Encoding
Since the adjacent frames from one clip have the similar content, the
frame-level features have high redundancy between each other, and
the complementary information is not fully explored. Therefore, we
aggregate the frame-level features into clip-level feature in this pa-
per, to reduce both the storage space and search complexity. Specif-
ically, given a clip, a set of frame-level features {𝑣1, 𝑣2, · · · , 𝑣𝑁 } are
extracted through frame-level encoding, then aggregated into a
single clip-level feature 𝑥 , which is defined as follow:

𝑥 = 𝑓𝐶 (𝑣1, 𝑣2, · · · , 𝑣𝑁 ) (4)

To encode the clip-level feature, we propose an adapted Trans-
former [33], called clip-level set transformer network, whose archi-
tecture is shown in Figure 5. Instead of directly using Transformer
to encode the clip-level feature, we apply the idea of set retrieval
[34] in the clip-level encoding. It is noted that we only use one en-
coder layer with 8 attention heads, without position embedding. It
enables our VRL approach has the abilities: (1)More robust. Increase
the robustness of the learned clip-level features with the ability of

Topic 14: Multimedia IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

1005



𝐯𝟏

𝐯𝟐

𝐯𝑵
…

Av
er
ag
e
Po
ol
in
g

L2
-N
or
m

𝐱

Tr
an
sf
or
m
er

R
an
do
m
M
as
k

Figure 5: Architecture of our clip-level set transformer net-
work.

frame permutation and missing invariance. (2) More flexible. Sup-
port more retrieval manners, including clip-to-clip retrieval and
frame-to-clip retrieval.

3.2.1 Temporal Structure Encoding. Similar with spatial structure
encoding in Section 3.1.2, given a set of clip-level features 𝑆𝐶 =

{(𝑥𝑏 , 𝑥𝑏+)}𝐵𝑏=1, where 𝐵 is the number of clips in a batch, a clip-level
constrastive learning is adopted. The loss function is defined as
follow:

𝐿𝐶 (𝑥, 𝑥+) =
1
𝐵

𝐵∑︁
𝑏=1

− E𝑃𝑑 log 𝑃 (𝐷 = 1|𝑥𝑏 , 𝑥𝑏+)

− (1 − E𝑃𝑑 ) log(1 − 𝑃 (𝐷 = 1|𝑥𝑏 , 𝑥𝑏+))

(5)

where 𝑃𝑑 denotes the actual data distribution and E𝑃𝑑 is set to 1
indicates the anchor clip and positive clip share absolutely identical
visual semantic. 𝑃 (𝐷 = 1|𝑥𝑏 , 𝑥𝑏+) denotes the posterior probability
that 𝑥 with 𝑥+ is from the actual data distribution, its definition is
similar with Equation (3). Clip-level encoding can learn the com-
plementary information from the frames of the video clip via self-
attention mechanism of Transformer, and hence the discimination
of features via attentively seeing the frames.

3.2.2 Masked Frame Modeling. To increase the robustness of the
learned clip-level features, we treat the frames of one clip as a set,
and randomly mask some frames in clip-level encoding. For a given
clip 𝐶 , we randomly drop some frames to generate a new clip 𝐶 ′.
Its goal is to eliminate the influence of frame blur or clip cut, and
drive the model to have the ability that use any combination of any
frames in the clip can retrieval its corresponding clips.

Specially, given a clip-level feature 𝑥 , its new feature after con-
ducting masked frame modeling is denoted as 𝑥 ′. Similarly, the
corresponding positive clip-level feature and its new feature are de-
noted as 𝑥+ and 𝑥 ′+. Therefore, we need to learn from the following
loss functions: 𝐿𝐶 (𝑥, 𝑥 ′+) and 𝐿𝐶 (𝑥 ′, 𝑥+). So the final loss function
of clip-level set transformer network is defined as follows:

𝐿𝐶 = 𝐿𝐶 (𝑥, 𝑥+) + 𝐿𝐶 (𝑥, 𝑥 ′+) + 𝐿𝐶 (𝑥 ′, 𝑥+) (6)

3.3 Video Similarity Calculation
Instead of directly using the whole video frames or divide the video
into clips with fixed time interval, we first conduct shot boundary

Figure 6: Examples of videos collected from video website.

detection for each video to segment the videos into shots, and then
divide the shots into clips at a fixed time interval, i.e 𝑁 seconds.
In this way, we can guarantee the frames within the same clip
contain similar contents, so that clip-level encoding can reduce
the redundancy rather than losing import information. Second,
the sequence of successive frames is passed through the clip-level
set transformer network to generate the clip-level feature. Finally,
the clip-level feature is binarized by IsoHash[35] to further reduce
the storage cost and search cost. When retrieving, we measure the
clip-to-clip similarities with hamming distance. Given an𝑀×𝑁 clip-
to-clip similarity matrix, the video similarity score can be calculated
as follows:

𝑆𝑖𝑚 =
1
𝑀

𝑀∑︁
𝑖=1

max
𝑗 ∈[1,𝑁 ]

𝐶𝑆 (𝑖, 𝑗) (7)

where 𝐶𝑆 (𝑖, 𝑗) denotes the similarity score between clip 𝑖 and 𝑗 ,
and it is calculated as follows:

𝐶𝑆 (𝑖, 𝑗) = max
𝑘∈𝐾

H(𝑖, 𝑘) − H (𝑖, 𝑗) (8)

in which 𝐾 indicates the entire clip set and H(·, ·) indicates the
hamming distance calculation.

4 EXPERIMENTS
4.1 Implementation Details
At training phase, we adopt default SGD optimizer with the batch
size of 64. We use a weight decay of 5 × 10−6 with a momentum of
0.9 and set the initial learning rate as 0.0001. The model is trained
for 5 epochs, and the learning rate learning rate is divided by 10
after the first epoch.

4.2 Datasets
OurVRL approach is trained on our constructed Self-Transformation
dataset, and performs evaluations on two challenging near-duplicate
video retrieval datasets, namely FIVR-200K and SVD. The detailed
information is introduced as follows:

• Self-Transformation is constructed by randomly collect-
ing videos from video website 1, as shown in Figure 6. It

1https://www.youku.com/
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Feature Methods Feature Dim/#bits DSVR CSVR ISVR

Video-level
HC[36] - 0.265 0.247 0.193
DML[7] 500D 0.398 0.378 0.309
TCA𝑐 [9] 2048D 0.570 0.553 0.473

Frame-level

CNN-L[10] 4096D 0.710 0.675 0.572
PPT[11] 4096D 0.775 0.740 0.632
TN[12] - 0.724 0.699 0.589
TCA𝑓 [9] 2048D 0.877 0.830 0.703
VisiL[8] 9x3840D 0.892 0.841 0.702
VRL𝑓 512 bits 0.900 0.858 0.709

Clip-level VRL 512 bits 0.876 0.835 0.686
Table 1: Comparisons with state-of-the-art methods on all three tasks of FIVR-200K dataset.

consists of 3,000 hours’ videos, and temporal and spatial
transformations are performed at training stage.

• FIVR-200K [2] consists of 225,960 videos and 100 queries.
It is constructed for fine-grained incident video retrieval,
including three retrieval tasks: (1) Duplicate scene video re-
trieval (DSVR) is to retrieval the videos sharing at least one
scene that captured by the same camera, regardless of any
transformation. (2) Complementary scene video retrieval
(CSVR) is to retrieval the videos containing part of the same
spatio-temporal segment with different views. (3) Incident
scene video retrieval (ISVR) is to retrieval the videos cap-
turing the same event without the same overlapped saptio-
temporal segment. We evaluate our VRL approach on all the
three tasks to verify its effectiveness.

• SVD [1] is constructed for short video retrieval task. It con-
sists of 562,013 short videos with the duration less than
60 seconds. It contains 1,206 query videos, and over 30,000
labelled videos in which the negatives have extremely sim-
ilar but different appearance. Besides, there are more than
500,000 hard negative unlabelled distraction videos to in-
crease the retrieval difficulty.

4.3 Evaluation Metric
Following [1, 2], we apply the mean average precision (mAP) score
to evaluate the video retrieval performance. We first calculate av-
erage precision (AP) score for each query, and then calculate their
mean value as mAP score.

4.4 Comparisons with State-of-the-art Methods
In this subsection, experimental results and analyses of comparing
our proposed VRL approach with the state-of-the-art methods on
FIVR-200K and SVD datasets are presented, which are shown in
Table 1 and Table 2. It is noted that we evaluate our VRL approach
on all the three tasks of FIVR-200K dataset, including DSVR, CSVR,
ISVR.

4.4.1 Comparisons with Frame-level Retrieval Methods. We then
compare our VRL approach with 6 frame-level retrieval methods,
which are briefly introduced as follows:

• CNN-L and CNN-V [10] are proposed to convert multiple
intermediate CNN features into one vector via layer and
vector aggregation schemes respectively.

Feature Methods Feature Dim/#bits Top-100 mAP
Video-level DML[7] 500D 0.813

Frame-level
CNN-L[10] 4096D 0.610
CNN-V[10] 4096D 0.251

VRL𝑓 512 bits 0.871
Clip-level VRL 512 bits 0.860

Table 2: Comparisons with state-of-the-art methods on SVD
dataset.

• PPT [9] is a spatio-temporal pattern-based method under
the hierarchical filter-and-refine framework.

• Temporal Network (TN) [12] is proposed to detect the longest
shared path between two videos.

• Temporal Context Aggregation (TCA) [9] is proposed to
learn a single video vector by aggregating frame-level fea-
tures with self-attention. In comparisons with frame-level
retrieval methods, we report its result with frame-level fea-
ture.

• VisiL [8] is proposed to calculate video-to-video similarity
from refined frame-to-frame similarity matrices.

Compare with frame-level retrieval approach, our VRL approach
outperforms all state-of-the-art methods except VisiL. It is noted
that VisiL adopts a region-aligned matching scheme, which is im-
practical for large-scale retrieval task due to its low efficiency.While
our VRL approach still achieves comparable retrieval performance
with VisiL under the situation that only using binary codes and no
any re-ranking process. Furthermore, when encoding the videos
in frame-level features, our VRL𝑓 approach can achieve better re-
trieval performance than VisiL without any complex calculation.
It is mainly because our VRL approach can boost the discrimina-
tion of the features due to the learning from the self-generated
training data, which has strong power in representation learning.
Importantly, no annotated video pairs are needed, which efficiently
reduces the expensive cost of manual annotation.

4.4.2 Comparisons with Video-level Retrieval Methods. We first
compare our VRL approach with 3 video-level retrieval methods,
which are briefly introduced as follows:
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• Hashing Codes (HC) [36] is proposed to learn a group of hash
functions based on frame-level features, and then combine
the hash codes into a single video vector.

• Deep Metric Learning (DML) [7] is proposed to early or late
fuse the frame-level features into a single video vector, which
is then fine-tuned by deep metric learning.

• Temporal Context Aggregation (TCA) [9], whose result with
video-level feature is reported.

Compare with video-level retrieval methods, clip-level retrieval
methods needs more storage and search cost. To reduce these costs,
we utilize hash codes and measure hamming distances while other
methods use floats and measure Euclidean or Cosine distances.
Even so, our VRL approach achieves significant improvements by
30.6%, 28.2%, 21.3% mAPs on the DSVR, CSVR and ISVR tasks of
FIVR-200K dataset, as well as 4.7% mAP on SVD dataset, which are
shown in Table 1 and Table 2. It are mainly because: (1) Clip-level
feature encoding can extract more abundant and complementary
information from the interactions among clip frames. (2) Clip-level
set transformer network can aggregate the frame features in one clip
considering their different roles, which takes full advantage of each
frame’s discrimination, and eliminates the redundancy between the
adjacent frames. Besides, it acquires the frame permutation and
missing invariant ability with masked frame modeling.

Feature Storage Space Search Complexity
Frame-level 1720.32 MB O(𝑀 × 𝑁 )
Clip-level 366.98 MB ∼ 1

25O(𝑴 × 𝑵 )

Table 3: Reduction of storage and search cost on SVD dataset.

4.5 Effectiveness of Reducing Storage and
Search Cost

To verify the effectiveness of our proposed VRL approach on reduc-
ing the storage and search cost, we compare the storage spaces and
search complexities between frame-level retrieval and clip-level
retrieval on SVD dataset. As shown in Table 3, the storage of the
frame-level features cost 1720.32 MB, while clip-level features only
cost 366.98 MB, reducing the storage cost by 78.7%. It is mainly
because that our VRL approach first segments the videos into shots,
and then divides the shots into clips, finally encodes the clips to
represent the videos.

Suppose that the SVD dataset has𝑚 queries and 𝑛 videos, and
they are encoded by 𝑀 frame-level features and 𝑁 frame-level
features respectively. So it needs O(𝑀 ×𝑁 ) similarity computation.
However, depend on the above analyses, they can be encoded by
∼ 5
𝑀

and ∼ 5
𝑁

clip-level features respectively, so only O(∼ 𝑀
5 × ∼

𝑁
5 ) =∼ 1

25O(𝑀 × 𝑁 ) similarity computation is needed. In other
words, our VRL approach increases the retrieval speed by ∼ 25
times, which verifies that clip-level video retrieval is an efficient
retrieval paradigm to reduce the storage cost and search cost.

4.6 Exploration of Flexible Retrieval Manners
As mentioned above, clip-level set transformer network provides
more flexible retrieval manners, i.e. clip-to-clip retrieval and frame-
to-clip retrieval. So we explore their retrieval performance on SVD

Query Database Top-100 mAP
Clip-level Clip-level 0.860
Frame-level Clip-level 0.871

Table 4: Results of different retrieval manners.

Methods Transformations DSVR CSVR ISVRPT GT ET
VRL𝑓 ✓ ✓ ✓ 0.900 0.858 0.709
A ✓ ✓ 0.868 0.818 0.673
B ✓ ✓ 0.881 0.825 0.662
C ✓ ✓ 0.868 0.815 0.649

Table 5: Impacts of different spatial transformations on FIVR-
200K dataset.

dataset, as shown in Table 4. The videos in database are all encoded
in clip-level features, only different in query encoding. We can see
that use more fine-grained features (i.e. frame-level) can achieve
better retrieval performance, which further verifies the effectiveness
of clip-level encoding with masked frame modeling, which can
driven our VRL approach learn both clip-level and frame-level
features. With more flexible retrieval manners, our VRL approach
has more application prospects.

4.7 Ablation Study
Detailed experiments are performed to further verify the effective-
ness of our VRL approach in the following aspects:

4.7.1 Effectiveness of Self-generation of Training Data. We directly
utilize the frame-level features to perform video retrieval, results
are shown in Table 1 and Table 2 as “VRL𝑓 ". It outperforms than
state-of-the-art methods on both two datasets, which verifies the ef-
fectiveness of the spatial structure encoding from the large amounts
of videos. Due to self-generation of training data, we can generate
the training data as much as we want, which breaks the restriction
of the expensive manual annotation cost.

Besides, we further evaluate the impact of each transformation
on the retrieval performance of frame-level encoding. The results
of three tasks on FIVR-200K dataset are shown in Table 5, where
“PT", “GT" and “ET" denote photometric transformation, geometirc
transformation and editing transformation respectively, as well
as the experiments of “A", “B" and “C" denote training without
editing transformation, geometric transformation and photometric
transformation respectively. We can observe that “VRL𝑓 " with all
the three types of transformations achieves the best performance,
which verifies that each transformation plays an irreplaceable role
on video representation learning. They provide rich supervision
information to drive the model to approximate the real data distri-
bution, which make the learned representation spatial-temporal
invariant.

In addition, we also show the examples of retrieved results in
Figure 7, where (a) is from SVD dataset, and (b) and (c) are from
FIVR-200K dataset. We can observe that even the copied videos are
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Figure 7: Examples of retrieved results.

very different from the original video with complex transforma-
tions, our VRL approach can also find them from the large scale of
database, which verifies its effectiveness.

4.7.2 Effectiveness of Clip-level Set Transformer Network. In the
clip-level encoding, we propose the clip-level set transformer net-
work to encode the clip-level features. To verify its effectiveness,
we compare it with the NetVLAD [37], which aggregates the frame-
level features via a new generalized VLAD layer. The results are
shown in Table 6. We can observe that our VRL approach achieves
better performance than NetVLAD method. It is because that the
complementary and variant information can be learned from the
interactions among clip frames via self-attention mechanism, and
the masked frame modeling can make our VRL approach has the
ability of frame permutation and missing invariance.

4.7.3 Effectiveness of Masked Frame Modeling. We evaluate the
effectiveness of clip-level encoding with masked frame modeling on
FIVR-200K and SVD datasets. Results are shown in Table 7, where
“CE" and “MFM" denote clip-level encoding and masked frame mod-
eling respectively. Clip-level encoding with masked framemodeling
coerces the Transformer to learn the correlations between the an-
chor clip with missing information and positive clip, as well as
the anchor clip and positive clip with missing information, which

Methods SVD FIVR-200K
DSVR CSVR ISVR

NetVLAD [37] 0.706 0.690 0.636 0.503
VRL 0.860 0.876 0.835 0.686

Table 6: Comparison between our clip-level encoding and
NetVLAD.

Methods SVD FIVR-200K
DSVR CSVR ISVR

CE 0.854 0.870 0.834 0.687
CE w/ MFM 0.860 0.876 0.835 0.686

Table 7: Effectiveness of clip-level encoding with masked
frame modeling.

makes the transformer more robust and not sensitive to the frame
missing. So it improves the discrimination and robustness of the
learned clip-level feature, and achieves better performance. Besides,
due tomasked framemodeling, our VRL approach can support more
flexible retrieval manners, i.e. clip-to-clip retrieval and frame-to-clip
retrieval. The results can be found in Table 4.
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Clip Length SVD FIVR-200K
DSVR CSVR ISVR

4s 0.861 0.883 0.841 0.693
6s 0.867 0.881 0.837 0.688
8s 0.860 0.876 0.835 0.686

Table 8: Impact of clip length on clip-level encoding.

4.7.4 Impact of Clip Length. Besides, we evaluate the impact of
clip length to the retrieval performance of clip-level set transformer
network. Table 8 shows the results of different clip length settings
on FIVR-200K and SVD datasets. We can observe that our clip-level
set transformer network is not very sensitive to the clip lengths. It
is mainly because that we apply masked frame modeling in clip-
level encoding, which drives the model to have the ability that any
combination of any frames in the clip can retrieval its corresponding
clips. So to balance the retrieval accuracy and efficiency, we set the
clip length as 8s in our experiments.

5 CONCLUSION
This paper proposes the VRL approach to encode the video in
clip-level representation with contrastive learning to reduce the
expensive cost of manual annotation, storage space and similarity
search . It consists of two components: (1) Frame-level encoding is
to learn the discrimination and robustness of the learned feature
with self-generation of training data, which automatically generate
the pairs of the videos and their transformations as supervision
information, reducing the heavy labor consumption in annotating.
(2) Clip-level encoding is to reduce the redundancy of the frames in
a clip, as well as learn the complementary and discriminative infor-
mation from the interactions among clip frames. Besides, clip-level
encoding with masked frame modeling make the model frame per-
mutation and missing invariant, and support more flexible retrieval
manners. Comprehensive experiments on two challenging video
retrieval datasets, namely SVD and FIVR-200K, verify the effective-
ness of our VRL approach, which achieves the best performance of
video retrieval on accuracy and efficiency.

The future works will lie in two aspects: (1) How to design more
efficient self-generation strategy? (2) How to transfer the motion
information to RGB frames in training, but only use RGB frames
in retrieval. Both of them will be explored to further improve the
video retrieval performance.
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